

Modelling Data – Better Approaches How to get useful information?

Adrian R. Rennie

UNIVERSITET

Monolayers – Simple Interpretation

Define $g_s(Q_z)$ in terms of measured reflectivity and $R_F(Q_z)$ (the Fresnel reflectivity for perfectly sharp interface):

$$g_s(Q) = Q^2 (R - R_F) / (1 - R)$$

 $\ln g_{\rm s}(Q) \approx -t^2 Q^2 / 12$

Roughly In $(Q^2 R) \approx -t^2 Q^2/12$

Contrast match of two bulk phases $R_F(Q) = 0$

Real Interfaces are not just layers

Slab models are easy to calculate but people are not very interested in just thickness and scattering length density

Surface Excess and Area per Molecule

Volume per molecule: V_m Scattering length: b_m Scattering length density: $\rho = b_m / V_m$

$$V_{\rm m} = t A_{\rm m}$$

Scattering length density:

$$\rho = (b_m / V_m) = b_m / (t A_m)$$

Area per molecule: $A_m = b_m / t \rho$

Adsorption of Surfactant

Surface active molecules Amphiphilic Bind to surface – how? What are properties?

Hexadecyl trimethyl ammonium bromide C₁₆H₃₃N(CH₃)₃⁺ Br⁻

Some Possible Structures

Monolayer

• Bilayer

UNIVERSITET

CTAB at 27° C on amorphous SiO₂

- (a) D_2O (b) cmSiO₂ at 6 ×10⁻⁴ M
- Models
- Solid line Bilayer
- Dashed line Monolayer

Cationic Surfactant

- CTAB 27 C on SiO₂
- Label heads & tails

Head 6 +/- 2 Å Tail 28 +/- 4 Å Roughness ~ 8 Å Fractional Coverage 35% at 3 $\times 10^{-4}$ M 80% at 6 $\times 10^{-4}$ M

Langmuir **6**, 1031-1034 (1990). *J. Colloid Interf. Sci.* **162**, 304-310 (1994).

Plotting Data

Different representation is helpful

How to Look at Data?

 Log_{10} R vs Q

RQ⁴ vs Q

Effects of Resolution

Silicon substrate: film thickness 1500 Å scattering length density 6.3×10^{-6} Å⁻²

Non-Uniform Surfaces

If you have patches of different layers at an interface do you average the density or average the reflectivity?

Neutron beam Top Top 1 2 3 4 Sub Freg 1 Neutron beam Top Freg 2Sub Freg 1 Liquid

What is the coherence length of a neutron?

UPPSALA

Describing Polymers

- Interdiffusion is this roughness?
- Brushes parabolic density profile
- (E. P. K. Currie et al *Physica* B, **283** 17 21)
- Other scaling laws e.g. O. Guiselin *J. Phys.* 50, 3407-3425 (1989).

We expect smooth profiles!

Fig. 6 Experimental reflectivity profiles obtained at ILL (circles) and fitted reflectivity profiles using a polymer layer model (dashed curves) and a lattice mean-field theory (solid curves) for polymers grafted on a Si/SiO₂/initiator surface at 328 K (top) and 293 K (bottom) in D₂O (left) and cmSi (right). Reflectivity profiles using a polymer layer model with zero roughness are also shown (dotted curves). The top right panel contains an inset displaying $q^4R(q)$ versus q for small q.

J. Zhang, et al., Soft Matter, 4, 500-509 (2008).

Repeating Layers

A one dimensional crystal

Bragg's law

Intensity of peaks may Depend on size and disorder

Calculate reflectivity for a profile

scattering length density NNNNN -200 z / Angström

Using Multiple Contrasts

Simultaneous fits for multiple data sets

www.reflectometry.net

Off-specular Scattering, GISANS, Nearsurface SANS

Adrian R. Rennie

SANS and GISANS

- Transmission geometry SANS is usually a simpler experiment
- In principle, calculations are identical BUT

Geometry and Multiple Scattering are important

Interfaces are 3-dimensional

Understanding rheology – shear flow

Brown et al. Progress in Colloid and Polymer Science 98, (1995) 99-102.

Interfaces - Where things happen?

Lubrication – SKF bearing

Electrode - Battery Oxford

Nanotoxicology - Nature

Catalysts

sample

Evanescent Wave

Looking at Materials

Anneli Salo - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6746303

Looking at Materials

Anneli Salo - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6746303

Off-specular & Reflection

Frédéric Ott, Sergey Kozhevnikov 'Off-specular data representations in neutron reflectivity', J. Appl. Cryst. 44, (2011), 359-369.

Peter Müller-Buschbaum 'GISAXS and GISANS as metrology technique for understanding the 3D morphology of block copolymer thin films' *European Polymer Journal* **81**, (2016), 470-493.

Strong Off-specular Scattering

10% vol. dispersion, Radius ~350 Å. Sapphire substrate, $\theta_i = 0.35 \text{ deg}$

PS latex in D₂O Liquid/Sapphire

UNIVERSITET Transform to

UPPSALA

10% vol. dispersion, Radius ~350 Å, sapphire substrate, $\theta_i = 0.35 \text{ deg}$

Some Scattering at Interfaces

UPPSALA UNIVERSITET

X-ray scattering – glass Sinha et al., *Phys. Rev. B.* **38**, 2297, 1988.

FIG. 6. Calculation of diffuse scattering in the distortedwave Born approximation for rocking curve where θ_1 and θ_2 are varied such that 2θ is fixed at 1°. The asymmetry is due to the area of the illuminated surface decreasing as θ_1 is increased. The q_y direction has been integrated over. Parameters are $\sigma = 7$ Å, h = 0.2, $\xi = 7000$ Å, and the optical constants for Pyrex are given in Sec. V.

Angle, Ψ /degrees Rennie et al., *Macromolecules* **22**, (1989), 3466-3475.

Nouhi et al. Journal of Applied Crystallography (2017)

UPPSALA

Calculating Scattering

UNIVERSITET Distorted Wave Born

Approximation (DWBA)

Simply allow for sequential events e.g.

Reflection then Scattering Refraction then Scattering Scattering then Reflection Reflection followed by weak scattering.

(a) Optical Matrix Calculation

(b) Weak Scattering (Born approximation)

Silicon/D₂O Interface

Copolymer films

P. Müller Buschbaum et al. J. Appl. Cryst. 47, (2014), 1228–1237

Changes with Depth

- Used wavelength to probe different depths
- Longer wavelength looks neare the surface

J. Appl. Cryst. 47, (2014), 1228-1237

Diffraction from Surface Layers

Nouhi et al. Journal of Applied Crystallography (2017)

Penetration depth

A depth sensitive technique:

Wavelength Incident angle

UPPSALA UNIVERSITET

Data at different angles

-0.10 -0.15 -0.10 -0.05 0.000.05 -0.15 -0.05 -0.10 -0.05 -0.10 0.00 0.05 -0.15 0.00 0.05 $Q_Z (nm^{-1})$ $Q_Z (nm^{-1})$ $Q_Z (nm^{-1})$

QCM-D data: structure forms with a separation from the interface [Hellsing et al. 2017, *manuscript*]

NG3 SANS - NCNR

- Off-specular scattering
- Near Surface SANS
- GISANS

What is the difference?

PS latex in D₂O Liquid/Sapphire

UNIVERSITET Transform to

UPPSALA

10% vol. dispersion, Radius ~350 Å, sapphire substrate, $\theta_i = 0.35 \text{ deg}$

10% vol dispersion, 0.35

PS latex in D₂O – sapphire surface

Sum along Q_x

10% vol dispersion, 0.35

Compare Qx and Qz

M. S. Hellsing, et al. Applied Physics Letters, 100, (2012), 221601.